Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607918

ABSTRACT

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Subject(s)
CA1 Region, Hippocampal , Interneurons , Recognition, Psychology , Vasoactive Intestinal Peptide , Animals , Interneurons/metabolism , Interneurons/physiology , Vasoactive Intestinal Peptide/metabolism , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/cytology , Mice , Male , Recognition, Psychology/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Mice, Inbred C57BL , Memory/physiology , Parvalbumins/metabolism , Exploratory Behavior/physiology , Somatostatin/metabolism
2.
Commun Biol ; 7(1): 225, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396202

ABSTRACT

Reduced inhibition by somatostatin-expressing interneurons is associated with depression. Administration of positive allosteric modulators of α5 subunit-containing GABAA receptor (α5-PAM) that selectively target this lost inhibition exhibit antidepressant and pro-cognitive effects in rodent models of chronic stress. However, the functional effects of α5-PAM on the human brain in vivo are unknown, and currently cannot be assessed experimentally. We modeled the effects of α5-PAM on tonic inhibition as measured in human neurons, and tested in silico α5-PAM effects on detailed models of human cortical microcircuits in health and depression. We found that α5-PAM effectively recovered impaired cortical processing as quantified by stimulus detection metrics, and also recovered the power spectral density profile of the microcircuit EEG signals. We performed an α5-PAM dose-response and identified simulated EEG biomarker candidates. Our results serve to de-risk and facilitate α5-PAM translation and provide biomarkers in non-invasive brain signals for monitoring target engagement and drug efficacy.


Subject(s)
Depression , Receptors, GABA-A , Humans , Depression/drug therapy , Receptors, GABA-A/metabolism , Neurons/metabolism , Interneurons/metabolism , Brain/metabolism
3.
PLoS Comput Biol ; 19(4): e1010986, 2023 04.
Article in English | MEDLINE | ID: mdl-37036854

ABSTRACT

Reduced cortical inhibition by somatostatin-expressing (SST) interneurons has been strongly associated with treatment-resistant depression. However, due to technical limitations it is impossible to establish experimentally in humans whether the effects of reduced SST interneuron inhibition on microcircuit activity have signatures detectable in clinically-relevant brain signals such as electroencephalography (EEG). To overcome these limitations, we simulated resting-state activity and EEG using detailed models of human cortical microcircuits with normal (healthy) or reduced SST interneuron inhibition (depression), and found that depression microcircuits exhibited increased theta, alpha and low beta power (4-16 Hz). The changes in depression involved a combination of an aperiodic broadband and periodic theta components. We then demonstrated the specificity of the EEG signatures of reduced SST interneuron inhibition by showing they were distinct from those corresponding to reduced parvalbumin-expressing (PV) interneuron inhibition. Our study thus links SST interneuron inhibition level to distinct features in EEG simulated from detailed human microcircuits, which can serve to better identify mechanistic subtypes of depression using EEG, and non-invasively monitor modulation of cortical inhibition.


Subject(s)
Brain , Depression , Humans , Biomarkers , Electroencephalography , Interneurons/physiology
4.
Cereb Cortex ; 33(8): 4360-4373, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36124673

ABSTRACT

Aging involves various neurobiological changes, although their effect on brain function in humans remains poorly understood. The growing availability of human neuronal and circuit data provides opportunities for uncovering age-dependent changes of brain networks and for constraining models to predict consequences on brain activity. Here we found increased sag voltage amplitude in human middle temporal gyrus layer 5 pyramidal neurons from older subjects and captured this effect in biophysical models of younger and older pyramidal neurons. We used these models to simulate detailed layer 5 microcircuits and found lower baseline firing in older pyramidal neuron microcircuits, with minimal effect on response. We then validated the predicted reduced baseline firing using extracellular multielectrode recordings from human brain slices of different ages. Our results thus report changes in human pyramidal neuron input integration properties and provide fundamental insights into the neuronal mechanisms of altered cortical excitability and resting-state activity in human aging.


Subject(s)
Neurons , Pyramidal Cells , Aged , Humans , Action Potentials/physiology , Brain/physiology , Neurons/physiology , Pyramidal Cells/physiology
5.
Gigascience ; 112022 11 15.
Article in English | MEDLINE | ID: mdl-36377463

ABSTRACT

BACKGROUND: Whole-cell patch-clamp electrophysiology is an essential technique for understanding how single neurons translate their diverse inputs into a functional output. The relative inaccessibility of live human cortical neurons for experimental manipulation has made it difficult to determine the unique features of how human cortical neurons differ from their counterparts in other species. FINDINGS: We present a curated repository of whole-cell patch-clamp recordings from surgically resected human cortical tissue, encompassing 118 neurons from 35 individuals (age range, 21-59 years; 17 male, 18 female). Recorded human cortical neurons derive from layers 2 and 3 (L2&3), deep layer 3 (L3c), or layer 5 (L5) and are annotated with a rich set of subject and experimental metadata. For comparison, we also provide a limited set of comparable recordings from 21-day-old mice (11 cells from 5 mice). All electrophysiological recordings are provided in the Neurodata Without Borders (NWB) format and are available for further analysis via the Distributed Archives for Neurophysiology Data Integration online repository. The associated data conversion code is made publicly available and can help others in converting electrophysiology datasets to the open NWB standard for general reuse. CONCLUSION: These data can be used for novel analyses of biophysical characteristics of human cortical neurons, including in cross-species or cross-lab comparisons or in building computational models of individual human neurons.


Subject(s)
Neurons , Humans , Male , Female , Mice , Animals , Young Adult , Adult , Middle Aged , Patch-Clamp Techniques , Neurons/physiology , Electrophysiology
6.
Cell Rep ; 38(2): 110232, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021088

ABSTRACT

Cortical processing depends on finely tuned excitatory and inhibitory connections in neuronal microcircuits. Reduced inhibition by somatostatin-expressing interneurons is a key component of altered inhibition associated with treatment-resistant major depressive disorder (depression), which is implicated in cognitive deficits and rumination, but the link remains to be better established mechanistically in humans. Here we test the effect of reduced somatostatin interneuron-mediated inhibition on cortical processing in human neuronal microcircuits using a data-driven computational approach. We integrate human cellular, circuit, and gene expression data to generate detailed models of human cortical microcircuits in health and depression. We simulate microcircuit baseline and response activity and find a reduced signal-to-noise ratio and increased false/failed detection of stimuli due to a higher baseline activity in depression. We thus apply models of human cortical microcircuits to demonstrate mechanistically how reduced inhibition impairs cortical processing in depression, providing quantitative links between altered inhibition and cognitive deficits.


Subject(s)
Depression/physiopathology , Interneurons/metabolism , Somatostatin/metabolism , Cognitive Dysfunction/metabolism , Computational Biology/methods , Databases, Factual , Depression/metabolism , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Depressive Disorder, Treatment-Resistant/metabolism , Depressive Disorder, Treatment-Resistant/physiopathology , Female , Humans , Male , Models, Theoretical , Nerve Net/physiology , Neural Inhibition , Neurons/physiology , Somatostatin/genetics
7.
J Neurophysiol ; 126(4): 997-1014, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34379493

ABSTRACT

The wide diversity of inhibitory cells across the brain makes them suitable to contribute to network dynamics in specialized fashions. However, the contributions of a particular inhibitory cell type in a behaving animal are challenging to untangle as one needs to both record cellular activities and identify the cell type being recorded. Thus, using computational modeling and theory to predict and hypothesize cell-specific contributions is desirable. Here, we examine potential contributions of interneuron-specific 3 (I-S3) cells-an inhibitory interneuron found in CA1 hippocampus that only targets other inhibitory interneurons-during simulated θ rhythms. We use previously developed multicompartment models of oriens lacunosum-moleculare (OLM) cells, the main target of I-S3 cells, and explore how I-S3 cell inputs during in vitro and in vivo scenarios contribute to θ. We find that I-S3 cells suppress OLM cell spiking, rather than engender its spiking via postinhibitory rebound mechanisms, and contribute to θ frequency spike resonance during simulated in vivo scenarios. To elicit recruitment similar to in vitro experiments, inclusion of disinhibited pyramidal cell inputs is necessary, implying that I-S3 cell firing broadens the window for pyramidal cell disinhibition. Using in vivo virtual networks, we show that I-S3 cells contribute to a sharpening of OLM cell recruitment at θ frequencies. Furthermore, shifting the timing of I-S3 cell spiking due to external modulation shifts the timing of the OLM cell firing and thus disinhibitory windows. We propose a specialized contribution of I-S3 cells to create temporally precise coordination of modulation pathways.NEW & NOTEWORTHY How information is processed across different brain structures is an important question that relates to the different functions that the brain performs. Using modeling and theoretical analyses, we show that an inhibitory cell type that only inhibits other inhibitory cells can broaden the window for disinhibition of excitatory cells, manage input pathway switching, and modulate inhibitory cell spiking. This work contributes to the knowledge of how coordination between sensory and memory consolidation information can be attained.


Subject(s)
CA1 Region, Hippocampal/physiology , Interneurons/physiology , Models, Biological , Nerve Net/physiology , Pyramidal Cells/physiology , Theta Rhythm/physiology , Animals , Computer Simulation
8.
Front Cell Neurosci ; 14: 554405, 2020.
Article in English | MEDLINE | ID: mdl-33173468

ABSTRACT

Learning and memory deficits are hallmarks of the aging brain, with cortical neuronal circuits representing the main target in cognitive deterioration. While GABAergic inhibitory and disinhibitory circuits are critical in supporting cognitive processes, their roles in age-related cognitive decline remain largely unknown. Here, we examined the morphological and physiological properties of the hippocampal CA1 vasoactive intestinal peptide/calretinin-expressing (VIP+/CR+) type 3 interneuron-specific (I-S3) cells across mouse lifespan. Our data showed that while the number and morphological features of I-S3 cells remained unchanged, their firing and synaptic properties were significantly altered in old animals. In particular, the action potential duration and the level of steady-state depolarization were significantly increased in old animals in parallel with a significant decrease in the maximal firing frequency. Reducing the fast-delayed rectifier potassium or transient sodium conductances in I-S3 cell computational models could reproduce the age-related changes in I-S3 cell firing properties. However, experimental data revealed no difference in the activation properties of the Kv3.1 and A-type potassium currents, indicating that transient sodium together with other ion conductances may be responsible for the observed phenomena. Furthermore, I-S3 cells in aged mice received a stronger inhibitory drive due to concomitant increase in the amplitude and frequency of spontaneous inhibitory currents. These age-associated changes in the I-S3 cell properties occurred in parallel with an increased inhibition of their target interneurons and were associated with spatial memory deficits and increased anxiety. Taken together, these data indicate that VIP+/CR+ interneurons responsible for local circuit disinhibition survive during aging but exhibit significantly altered physiological properties, which may result in the increased inhibition of hippocampal interneurons and distorted mnemonic functions.

9.
Front Cell Neurosci ; 14: 277, 2020.
Article in English | MEDLINE | ID: mdl-33093823

ABSTRACT

Determining biophysical details of spatially extended neurons is a challenge that needs to be overcome if we are to understand the dynamics of brain function from cellular perspectives. Moreover, we now know that we should not average across recordings from many cells of a given cell type to obtain quantitative measures such as conductance since measures can vary multiple-fold for a given cell type. In this work we examine whether a tight combination of experimental and computational work can address this challenge. The oriens-lacunosum/moleculare (OLM) interneuron operates as a "gate" that controls incoming sensory and ongoing contextual information in the CA1 of the hippocampus, making it essential to understand how its biophysical properties contribute to memory function. OLM cells fire phase-locked to the prominent hippocampal theta rhythms, and we previously used computational models to show that OLM cells exhibit high or low theta spiking resonance frequencies that depend respectively on whether their dendrites have hyperpolarization-activated cation channels (h-channels) or not. However, whether OLM cells actually possess dendritic h-channels is unknown at present. We performed a set of whole-cell recordings of OLM cells from mouse hippocampus and constructed three multi-compartment models using morphological and electrophysiological parameters extracted from the same OLM cell, including per-cell pharmacologically isolated h-channel currents. We found that the models best matched experiments when h-channels were present in the dendrites of each of the three model cells created. This strongly suggests that h-channels must be present in OLM cell dendrites and are not localized to their somata. Importantly, this work shows that a tight integration of model and experiment can help tackle the challenge of characterizing biophysical details and distributions in spatially extended neurons. Full spiking models were built for two of the OLM cells, matching their current clamp cell-specific electrophysiological recordings. Overall, our work presents a technical advancement in modeling OLM cells. Our models are available to the community to use to gain insight into cellular dynamics underlying hippocampal function.

10.
F1000Res ; 9: 180, 2020.
Article in English | MEDLINE | ID: mdl-32595950

ABSTRACT

Background: Despite technological advances, how specific cell types are involved in brain function remains shrouded in mystery. Further, little is known about the contribution of different ion channel currents to cell excitability across different neuronal subtypes and their dendritic compartments in vivo. The picture that we do have is largely based on somatic recordings performed in vitro. Uncovering dendritic ion channel current contributions in neuron subtypes that represent a minority of the neuronal population is not currently a feasible task using purely experimental means. Methods: We employ two morphologically-detailed multi-compartment models of a specific type of inhibitory interneuron, the oriens lacunosum moleculare (OLM) cell. The OLM cell is a well-studied cell type in CA1 hippocampus that is important in gating sensory and contextual information. We create in vivo-like states for these cellular models by including levels of synaptic bombardment that would occur in vivo. Using visualization tools and analyses we assess the ion channel current contribution profile across the different somatic and dendritic compartments of the models. Results: We identify changes in dendritic excitability, ion channel current contributions and co-activation patterns between in vitro and in vivo-like states. Primarily, we find that the relative timing between ion channel currents are mostly invariant between states, but exhibit changes in magnitudes and decreased propagation across dendritic compartments. We also find enhanced dendritic hyperpolarization-activated cyclic nucleotide-gated channel (h-channel) activation during in vivo-like states, which suggests that dendritically located h-channels are functionally important in altering signal propagation in the behaving animal. Conclusions: Overall, we have demonstrated, using computational modelling, the dynamical changes that can occur to ion channel mechanisms governing neuronal spiking in vitro and in vivo. In particular, we have shown that the magnitudes of some ion channel current contributions are differentially altered during in vivo-like states relative to in vitro.


Subject(s)
CA1 Region, Hippocampal/cytology , Dendrites/physiology , Ion Channels/physiology , Neurons/physiology , Animals , Neurons/cytology
11.
Front Neural Circuits ; 14: 32, 2020.
Article in English | MEDLINE | ID: mdl-32581726

ABSTRACT

In the brain, there is a vast diversity of different structures, circuitries, cell types, and cellular genetic expression profiles. While this large diversity can often occlude a clear understanding of how the brain works, careful analyses of analogous studies performed across different brain areas can hint at commonalities in neuronal organization. This in turn can yield a fundamental understanding of necessary circuitry components that are crucial for how information is processed across the brain. In this review, we outline recent in vivo and in vitro studies that have been performed in different cortical areas to characterize the vasoactive intestinal polypeptide (VIP)- and/or calretinin (CR)-expressing cells that specialize in inhibiting GABAergic interneurons. In doing so, we make the case that, across cortical structures, interneuron-specific cells commonly specialize in the synaptic disinhibition of excitatory neurons, which can ungate the integration and plasticity of external inputs onto excitatory neurons. In line with this, activation of interneuron- specific cells enhances animal performance across a variety of behavioral tasks that involve learning, memory formation, and sensory discrimination, and may represent a key target for therapeutic interventions under different pathological conditions. As such, interneuron-specific cells across different cortical structures are an essential network component for information processing and normal brain function.


Subject(s)
Calbindin 2/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Nerve Net/metabolism , Neural Inhibition/physiology , Vasoactive Intestinal Peptide/metabolism , Animals , Cerebral Cortex/cytology , Hippocampus/cytology , Humans , Nerve Net/cytology
13.
Cereb Cortex ; 30(6): 3667-3685, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32080739

ABSTRACT

Disinhibition is a widespread circuit mechanism for information selection and transfer. In the hippocampus, disinhibition of principal cells is provided by the interneuron-specific interneurons that express the vasoactive intestinal polypeptide (VIP-IS) and innervate selectively inhibitory interneurons. By combining optophysiological experiments with computational models, we determined the impact of synaptic inputs onto the network state-dependent recruitment of VIP-IS cells. We found that VIP-IS cells fire spikes in response to both the Schaffer collateral and the temporoammonic pathway activation. Moreover, by integrating their intrinsic and synaptic properties into computational models, we predicted recruitment of these cells between the rising phase and peak of theta oscillation and during ripples. Two-photon Ca2+-imaging in awake mice supported in part the theoretical predictions, revealing a significant speed modulation of VIP-IS cells and their preferential albeit delayed recruitment during theta-run epochs, with estimated firing at the rising phase and peak of the theta cycle. However, it also uncovered that VIP-IS cells are not activated during ripples. Thus, given the preferential theta-modulated firing of VIP-IS cells in awake hippocampus, we postulate that these cells may be important for information gating during spatial navigation and memory encoding.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/metabolism , Interneurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Computer Simulation , Interneurons/physiology , Memory , Mice , Mice, Transgenic , Neural Inhibition/physiology , Optical Imaging , Patch-Clamp Techniques , Recruitment, Neurophysiological/physiology , Spatial Memory/physiology , Spatial Navigation/physiology , Theta Rhythm , Wakefulness
14.
PLoS One ; 14(1): e0209429, 2019.
Article in English | MEDLINE | ID: mdl-30620732

ABSTRACT

Brain coding strategies are enabled by the balance of synaptic inputs that individual neurons receive as determined by the networks in which they reside. Inhibitory cell types contribute to brain function in distinct ways but recording from specific, inhibitory cell types during behaviour to determine their contributions is highly challenging. In particular, the in vivo activities of vasoactive intestinal peptide-expressing interneuron specific 3 (IS3) cells in the hippocampus that only target other inhibitory cells are unknown at present. We perform a massive, computational exploration of possible synaptic inputs to IS3 cells using multi-compartment models and optimized synaptic parameters. We find that asynchronous, in vivo-like states that are sensitive to additional theta-timed inputs (8 Hz) exist when excitatory and inhibitory synaptic conductances are approximately equally balanced and with low numbers of activated synapses receiving correlated inputs. Specifically, under these balanced conditions, the input resistance is larger with higher mean spike firing rates relative to other activated synaptic conditions investigated. Incoming theta-timed inputs result in strongly increased spectral power relative to baseline. Thus, using a generally applicable computational approach we predict the existence and features of background, balanced states in hippocampal circuits.


Subject(s)
CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Interneurons/physiology , Models, Neurological , Action Potentials , Animals , Computer Simulation , Electrophysiological Phenomena , Interneurons/cytology , Mice , Nerve Net/cytology , Nerve Net/physiology , Neural Conduction/physiology , Neural Inhibition/physiology , Synapses/physiology , Synaptic Transmission/physiology , Theta Rhythm/physiology
15.
eNeuro ; 3(4)2016.
Article in English | MEDLINE | ID: mdl-27679813

ABSTRACT

Determining how intrinsic cellular properties govern and modulate neuronal input-output processing is a critical endeavor for understanding microcircuit functions in the brain. However, lack of cellular specifics and nonlinear interactions prevent experiments alone from achieving this. Building and using cellular models is essential in these efforts. We focus on uncovering the intrinsic properties of mus musculus hippocampal type 3 interneuron-specific (IS3) cells, a cell type that makes GABAergic synapses onto specific interneuron types, but not pyramidal cells. While IS3 cell morphology and synaptic output have been examined, their voltage-gated ion channel profile and distribution remain unknown. We combined whole-cell patch-clamp recordings and two-photon dendritic calcium imaging to examine IS3 cell membrane and dendritic properties. Using these data as a target reference, we developed a semi-automated strategy to obtain multi-compartment models for a cell type with unknown intrinsic properties. Our approach is based on generating populations of models to capture determined features of the experimental data, each of which possesses unique combinations of channel types and conductance values. From these populations, we chose models that most closely resembled the experimental data. We used these models to examine the impact of specific ion channel combinations on spike generation. Our models predict that fast delayed rectifier currents should be present in soma and proximal dendrites, and this is confirmed using immunohistochemistry. Further, without A-type potassium currents in the dendrites, spike generation is facilitated at more distal synaptic input locations. Our models will help to determine the functional role of IS3 cells in hippocampal microcircuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...